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Abstract. In this paper, we present two ways of detecting malware. The
first one takes advantage of a platform that we have developed. The plat-
form includes tools for capturing malware, running code in a controlled
environment, and analyzing its interactions with external entities. The
platform enables us to detect malware based on the observation of its
communication behavior. The second approach uses a method for detect-
ing encrypted Skype traffic and classifying Skype service flows such as
voice calls, skypeOut, video conferencing, chat, file upload and download
in Skype traffic. The method is based on the Statistical Protocol IDenti-
fication (SPID) that analyzes statistical values of some traffic attributes.
We apply the method to identify malicious traffic—we have successfully
detected the propagation of Worm.Win32.Skipi.b that spreads over the
Skype messenger by sending infected messages to all Skype contacts on
a victim machine.

1 Introduction

In this paper, we consider the problem of detecting malware. The standard
detection method consists of identifying malware by searching some patterns
in the code (a signature). The signature method however suffers from several
drawbacks and needs to be enhanced with other approaches. We consider two
other methods that may provide an additional possibility of detecting malware.
The first one is based on the observation of the communication behavior caused
by suspected code. It takes advantage of our platform for botnet-related mal-
ware analysis. It is composed of tools for capturing malware, running code in a
controlled environment, and analyzing its interactions with external entities.

The second method provides a means for detecting encrypted Skype traffic
and classifying Skype service flows such as voice calls, skypeOut, video confer-
encing, chat, file upload and download in Skype traffic. The method is based on
the Statistical Protocol IDentification (SPID) that analyzes statistical values of
some traffic attributes. We apply the method to identify malicious traffic—we
have successfully detected the propagation of Worm.Win32.Skipi.b that spreads
over the Skype messenger by sending infected messages to all Skype contacts
on a victim machine. We have focused on the selection of an appropriate set of
attribute meters based on propagation characteristics to classify malicious flows
with high accuracy.



2 Platform for botnet-related malware analysis

We have presented the design of the platform for botnet-related malware analysis
and its applications in the previous work [1,2,3]. It has the following functional-
ities (cf. Figure 1):

– Malware capture: for this purpose, we use Dionaea, which a popular low-
interaction honeypot, that mainly captures malware propagated through
vulnerabilities in the Microsoft SMB services.

– Malware classification: as soon as malware is captured, it is automatically
classified according to the network connections it attempts to perform to
contact its command and control service (C&C) [3]. To this end, malware is
run on a virtual machine without actual connection to the Internet but with
a DNS service provided by the host machine. The queried DNS addresses
and attempted connections are observed and recorded with the Mwna soft-
ware tool briefly described in Section 2.1. This allows detecting malware
with really unknown behavior thus avoiding the analysis of already known
malware.

– Analysis of malware network activity : it is performed under the control of
an operator using Mwna. The analysis focuses on identifying the C&C and
detecting malicious activities.

Fig. 1. Architecture of the platform

2.1 Mwna

Mwna (Malware Network Analyzer) runs on a gateway between a computer (real
or virtual) infected by malware (the victim) and the Internet. It is composed of
two programs communicating through Tcp sockets, the filter, and the reporter :



– The filter : it uses the netfilter_queue mechanism of Linux to intercept pack-
ets flowing through the network stack in the kernel. The process of packet
matching can be specified by rules (drop, trace, higher-level analysis, etc.).
Packets are analyzed up to the application level when necessary. It con-
trols connection establishment, its termination, and Dns activity (queries
and replies). A number of application-level protocols can be detected and at
least partially analyzed even if they do not run on their standard ports: Irc,
Http, Smtp. The Https protocol is identified and verified up to the point it
enters the encrypted mode (but certificates are not currently checked). The
Ntp, Ipp, and the Netbios Name and Session service protocols are verified
when they run on their standard ports. Unknown textual protocols can also
be detected.
The filter includes a system of dynamically loaded plugins allowing to extend
it with higher level functionalities that include monitoring and blocking of
malicious activities:
• Interaction with C&C: in the current state of the program, C&C can

mainly be detected as Irc-based protocols. C&C based on non stan-
dard textual or binary protocols and Http can also be detected with
few false positives. When C&C interaction through Irc is detected, all
communication between the victim and the attacker is recorded.

• Icmp and Tcp scans are detected and blocked.
• Denial of Service attacks (DoS): Tcp SYN flooding, Udp flooding, and

Http flooding attacks are detected and blocked by dropping packets
sent to the attacked host.

• Mail transmission attempts are detected and can optionally be blocked
by resetting the connection to the mail server.

• Spam transmission can be detected based on attempts to send a mail
through multiple relays or to multiple different destinations.

• The Http payload is analyzed to detect the transmission of Windows
executables. The detection is based on the identification of executable
headers and does not rely on the Content-type headers or file name
extensions.

As the filter is interfaced with the kernel, it must be executed with the
administrator privileges. Detected events are sent to the reporter using a
very simple textual protocol.

– The reporter : it is in charge of displaying messages for the operator, record-
ing events in a Sqlite database, storing communication traces in a file, and
recording C&C interactions. It does not need to be executed with the ad-
ministrator privileges.

The separation of Mwna into several processes has several advantages:

– As the reporter runs without administrator privileges, it can use high level
tools such as database or graphic user interface without security risks.

– High latency operations (e.g. user interaction, disk I/O) are removed from
the critical path of packet processing.

– Better performance can be achieved on multi-core architectures.



– The reporter can be run on a separate machine or on a production network,
without security risks.

– The reporter could be eventually replaced with a program performing a fully
automatic analysis of the malware network activity.

2.2 Detecting malware activities

In this section, we will present two examples of malware activities. In the first
one, we will present the graphic interface of Mwna with the malware that at
the first glance seems to attempt sending a spam. The second example is the
malware actually sending spam.

2.3 Port scanning malware

Fig. 2. Screen capture of Mwna

Figure 2 presents a screen capture of the reporter while analyzing malware
captured in December 2012. The title bar of the window shows the MD5 digest
of the malware. The line under the menu bar shows that the C&C has been
identified as Irc and presents the IP address and the port number.

The right text area under the line indicates the Dns replies. In the studied
case, there is only a reply to a TXT query on lap.viridinikasihc.net and a query
on the address of the host machine. The reply to the TXT query seems to be
some kind of encrypted data, which should include the address of the C&C.



The left text area shows the detected malicious activities: in this case, an
attempt to send a spam is detected, because a compromised machine tries to
connect to different Smtp servers. All these attempts fail, as the access provider
only allows connections to its own Smtp server.

The text area under the previous ones displays network activities: in this
case, only the connection to the IRC server.

The bottom text area displays the application-level activities: in this case,
the malware joins an IRC channel.

At this point, the tool indicates that spam transmission is attempted, but
there are two problems:

– The addresses of the Smtp servers are not Dns resolved,
– There is not enough data exchanged to specify a spam payload and a list of

recipients.

We have redirected the connections to the Smtp port to a program that
emulates a Smtp server without actually transmitting messages, but we did not
find any transmission once the connection is set up. Finally, if we disable the
spam detection feature, we can see that these connection attempts are in fact
scans on the Smtp port, probably with the goal of discovering open mail relays.

2.4 Spam sending malware

In this second example, the malware communicates with its C&C using a mod-
ified Irc protocol identified as an unknown textual protocol.

Four Dns queries try to find the mail servers of Aol, Yahoo, Google, and
Hotmail, which seems typical for spam sending malware. Then, the malware
downloads several files from Http servers. Five of them are Windows executables
and two others are queries to get the official IP address and a domain name of
the machine on which the malware runs.

Then, the malware attempts to connect to mail servers and spam transmis-
sion is detected.

As in the previous case, we have analyzed the malware while the Smtp traffic
is redirected to a local program. We could see two other downloads that appear
to be encrypted data, hence, the spam payload and the recipient list may be
contained in these files or encapsulated in the downloaded executable files. 383
mails have been sent in 5 minutes using 83 connections to many mail relay
addresses. In most connections, the malware only sent one mail, or no mail at
all, but in 17 cases, it sent up to 164 emails. All these mails are advertisements
for a russian site selling drugs.

2.5 Discussion

These two examples show that our platform allows to detect and identify ma-
licious activities of malware. Spam transmissions seem to be the most frequent
activity. In this case, we are able to gather enough data to determine the strategy
of spamming tools and to intercept the spam payload.



3 Classification method of encrypted Skype traffic

In this section, we present the second method for detecting malware activities.
More specifically, we identify malicious flows concealed in encrypted TCP Skype
traffic tunneled over the TLS/SSL protocol [4]. We have considered a worm
called Worm.Win32.Skipi.b alias Skipi [5] that spreads over the Skype Instant
Messaging (IM) system.

We apply a method for classifying Skype service flows [6,7] based on the
Statistical Protocol IDentification (SPID) algorithm [8]. SPID is based on traffic

models that contain a set of attribute fingerprints represented as probability
distributions. They are created through frequency analysis of traffic properties
called attribute meters of application layer data or flow features. An example of
such an attribute meter is byte frequency that measures the frequency at which
all of the possible 255 values occur in a packet. Other attribute meters defined in
detail later include for instance byte offset, byte re-occurring, direction change,
and packet size.

SPID operates in three steps. First, packets are classified into bi-directional
flows. All connections are represented as 5-tuples according to the source IP
address, source port, destination IP address, destination port, and transport
layer protocol. However, only packets carrying data are significant, because the
analysis is based on both the application layer data and flow features. Then, each
flow is analyzed in terms of attribute meters to obtain a collection of attribute
fingerprints associated with a particular type of traffic.

In the initial training phase, the method creates traffic models—attribute
fingerprints representative for the traffic we want to detect. During the classifi-
cation phase, the method computes attribute fingerprints on the flows to classify
and compares them with traffic models by means of the Kullback-Leibler (K-L)
divergence [9]:

D(P ||Q) = K-L(P,Q) =
X

x2X

P (x)log2
P (x)

Q(x)
. (1)

The K-L divergence is a measure of the difference between two probability
distributions P (x) and Q(x). P (x) represents the distribution of a particular
attribute of an observed flow and Q(x) is the distribution corresponding to a
known traffic model. Classification consists in comparing P (x) with all known
traffic models and selecting the protocol with the smallest average divergence
D(P ||Q) and greater than a given threshold. We need to correctly set the diver-
gence threshold to decrease the false positive rate for known traffic models—we
only take into consideration the K-L divergence average values above the thresh-
old.

In the first phase, it detects Skype traffic after a TCP three-way handshake
based on the first five packets of the connection by considering some attribute
meters reflecting application level data. Then, it changes the set of attribute
meters to payload independent features to detect service flows in the Skype
traffic: voice/video, skypeOut, chat, and file transfer. This phase requires a larger



Table 1. Attribute meters used in classification.

No. Attribute meter name Inspected bytes Inspected packets
per packet per flow

1 byte-frequency 100 8
2 action-reaction of first bytes 3 6
3 byte value offset hash meter 32 4
4 first 4 packets byte reoccurring distance with byte 32 4
5 first 4 packets first 16 byte pairs 17 4
6 first 4 ordered direction packet size 0 4
7 first packet per direction first N byte nibbles ⇠8 1
8 packet size distribution 0 All
9 direction packet size distribution 0 All
10 byte pairs reoccurring count 32 All
11 first server packet first bit positions ⇠16 1

number of packets to analyze to be effective: our calibration sets this value to
450 packets. Finally, the method considers more packets (the threshold is set
to 760) to further distinguish between voice and video flows, and between file
upload and download.

3.1 Attribute meters for Skype

Table 1 presents the set of attribute meters that we have defined for classifying
Skype traffic.

– byte frequency: in each packet it measures and returns the frequency of
individual bytes in the payload. Encrypted data seems to have equally dis-
tributed byte frequencies, whereas the plain text may exhibit different distri-
butions. The SSL protocol tends to provide some unencrypted information
related to a session, such as SSL version, message type, compression method
selected by the server, etc., in the first bytes of the encrypted packets.

– action-reaction of first bytes: it creates hash values based on the first 3
bytes of each packet that was sent in a different direction than the previous
one. It is better to analyze packets sent alternately in different directions
instead of looking at all packets, because we can easily analyze the request-
response phase between a client and a server. The meter is especially useful
in primary identification of a SSL Skype connection.

– byte value offset hash: it combines individual byte values in each packet
with the offset at which the bytes are positioned. The meter considers up
to 32 bytes of the 4 first packets. The SSL is one of the protocols that
use several positions in particular packets (e.g. in Client Hello or Server
Hello messages). As a result, the combination of bytes with their positions
provides some additional information with respect to the byte frequency.

– first 4 packets byte reoccurring distance with byte: it creates a short
hash value (usually a 4-bit representation) and combines it with the distance



between the two occurrences. The measurement detects the bytes that oc-
curred more than once within 16 previous bytes. It was specifically created to
identify banners in plain text packets like e.g. TT in HTTP GET and POST
messages, but it also applies to the case of the encrypted SSL content.

– first 4 packets first 16 byte pairs: it combines neighboring bytes in a
16-bit value and converts to a 8 bit hash value (the size is determined by the
fingerprint length). It analyzes only application layer data regardless of the
flow information, i.e. packet size, directions, or inter-arrival times. The meter
indicates that there are some specific, not random two-byte combinations
like e.g. list compression methods supported by the client in the SSL Client
Hello message sent to the server.

– first 4 ordered direction packet size: the meter returns the compressed
version of the packet size that represents a range in which the packet lies
instead of the exact value. Measurements are separately done for each of
four first packets in connection and the returned value is associated with the
packet direction and the order number. It is a flow based attribute created
for early traffic recognition.

– first packet per direction first N byte nibbles: it analyzes the first
packet in each direction and inspects its first few bytes depending on the
fingerprint length (8 bytes for a fingerprint length of 256). It provides a
measure combining the packet direction, byte offset, and a compact repre-
sentation of the byte value so-called nibble, (it divides a byte into two 4-bit
groups, performs an XOR calculation, and returns the resulting 4-bit value).
The first packet in each direction and the first few bytes corresponding to
these packets say a lot about the application layer protocol and might also
provide some hidden information of the underlying service.

– packet size distribution: it computes the distribution of the packet size.
It provides some hints about the encrypted flows, because the size of Skype
packets is somehow deterministic depending on the type of traffic.

– direction packet size distribution: this attribute is very similar to the
first 4 ordered direction packet size meter. The only difference is that it
inspects all packets in a connection and does not mark each measurement
with the order number of the packet in a connection. It is an example of a
flow based attribute especially suitable for detailed Skype classification: it is
able to classify flows in which packet sizes per direction are different, which
enables to distinguish file upload from download.

– byte pairs reoccurring count: it detects bytes that reoccur in two con-
secutive packets. In addition, it takes into account the direction of a given
packet and its predecessor.

– first server packet first bit positions: it looks into the first few bytes
of the first packet coming from the server, inspects each bit, and returns
the bit values with respect to the bit offset position. The idea is that when
connecting to TCP-based services, the server sends some typical welcome
messages.



3.2 Identification of Malicious Skype Flows

Finally, we want to test our detection method with malicious flows concealed
in Skype traffic. We have considered a worm called Worm.Win32.Skipi.b alias
Skipi that spreads over the IM system by sending URL-embedded encrypted
chat messages to all Skype contacts on a victim machine. We have selected
an appropriate set of attribute meters to use in the SPID algorithm to detect
malicious traffic.

Worms propagating in chat messengers have become one of security threats
in recent years [10,11,12]. However, existing Internet worm detection mechanisms
[13] cannot be directly applied to the detection of malicious flows spreading via
instant messengers. The mechanisms cannot distinguish between the encrypted
legitimate traffic and messages generated by worms: an infected user does noth-
ing but sending correctly looking messages to other end users.

Fig. 3. Propagation of the Skipi worm.

In our experiments, we obtain the ground truth information (the traffic gen-
erated by Skipi) by running the worm on a laptop having Skype installed. The
Skype client had a small number of contacts so that it could easily spread the
worm to them. Figure 3 illustrates the propagation process of Skipi through the
Skype instant messenger. Let us assume that user A receives a chat message
from one of his/her friends after the friend was infected by Skipi (Step 1). The
worm message is composed of a selection of some text strings to convince the
receiver to open a malicious link to a photo. An example of such a message sent
by the worm is shown below:

On 30/03/2011, at 10:19, user wrote:



> how are u ? :)
On 30/03/2011, at 10:19, user wrote:
> I used photoshop and edited it
On 30/03/2011, at 10:19, user wrote:
> http://www.%infectedURL%.jpg
On 30/03/2011, at 10:19, user wrote:
> oops sorry please don’t look there :S
On 30/03/2011, at 10:19, user wrote:
> :)

When user A clicks on the link to download the photo, it actually points to
the URL where a copy of the Skipi worm is located (Step 2). Once the worm
copy is downloaded (Step 3) and executed on the system, it starts to propagate
by sending similar messages to all active entries in the contact list (Step 4). We
focus on analyzing and detecting worm propagation traffic. We have observed
that malicious messages are closely associated with signaling traffic: the client
sends TCP segments to check the availability of other users in the contact list.
As soon as, it receives a confirmation, Skipi immediately sends the chat messages
containing the link redirecting the user to the malware location. After running
the malware in different network conditions, we have gathered a collection of
TCP flows containing malicious messages in encrypted traffic.

We have selected 6 attribute meters: 3, 7–11 in Table 1 to create the finger-
prints of the Skipi traffic. The model was created based on 30 TCP connections
corresponding to 1484 observations. For evaluation, we have compared the traffic
model with 6 models of Skype flow services used in the previous classification,
i.e. voice, video, file upload and download, skypeOut, and, in particular, the
legal chat service. We set SPID to inspect 30 first packets containing payload in
each connection and used the K-L divergence threshold of 0.8. We run the tests
with traces containing Skype flows as well as other Internet traffic composed of
various applications.

We have computed F -Measure defined as:

Precision =
TP

TP + FP

, (2)

Recall =
TP

TP + FN

, (3)

F -Measure =
2 ⇤ Precision ⇤Recall

Precision+Recall

, (4)

for all flows and for each of 6 selected attribute meters. The True Positive (TP)
term refers to all malicious Skype flows that were correctly identified as Skipi,
False Positives (FPs) refer to all flows that were incorrectly identified as Skipi
traffic. Finally, False Negatives (FNs) represent all flows of Skipi traffic that were
incorrectly identified as legitimate Skype service flows or other Internet traffic.



Figure 4 presents the F-Measure in function of the number of inspected pack-
ets with payload: it rapidly rises after the 18th packet, while after inspecting 30
packets, the F-Measure is equal to 87.5% with Recall of 100%. This means the
method has detected all malicious flows with no False Negatives, which is early
enough to take prevention actions such as blocking Skype traffic of the user
sending malicious chat messages to all Skype contacts after the first attempt.
The figure also shows that after the 45th packet, the F-Measure becomes flat
due to the fact that two-way communication between the Skipi worm and the
victim user contains between 40 and 140 packets depending on the message sent
through the chat messenger.
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Fig. 4. Detection of the Skipi worm: the F-Measure in function of the number of
inspected packets.

4 Conclusions

In this paper, we have presented two methods of detecting malware that go be-
yond the traditional signature based detection. The first one is based on the
observation of the communication behavior caused by suspected code. The de-
tection uses a platform with tools for capturing malware, running code in a
controlled environment, and analyzing their interactions with external entities.
The second approach uses a method for detecting encrypted Skype traffic and
classifying Skype service flows such as voice calls, skypeOut, video conferencing,
chat, file upload and download in Skype traffic. The method is based on the Sta-
tistical Protocol IDentification (SPID) that analyzes statistical values of some
traffic attributes. We have applied the method to identify malicious traffic—we
have successfully detected the propagation of Worm.Win32.Skipi.b that spreads
over the Skype messenger by sending infected messages to all Skype contacts on
a victim machine.
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